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Abstract 

This paper defines nth order Jacobi fields to be solutions to a second-order nonlinear differential 
equation defined by the Jacobi map. nth order Jacobi fields arise naturally as acceleration vector 
fields of geodesic variations. As a main theorem we prove necessity and sufficiency conditions 
for an nth order Jacobi field to be the acceleration vector field of a variation of geodesics normal 
to a submanifold. An m geodesic, m 1 2, is a smooth curve whose mth covariant derivative 
vanishes. We prove an index theorem giving bounds for the total m focal multiplicity along an 
m geodesic m normal to a submanifold in a flat manifold. 

Subj. Class.: Differential geometry 
1991 MSC: 49LO5 
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1. Introduction 

Using two-parameter variations in a smooth semi-Riemannian manifold (M, g) we prove 
the existence and uniqueness of the Jacobi map 

3n-I 

F,:@TM+TM 
i=l 

from the 3n - 1 fold Whitney sum of TM to TM, see Lemma 2.1. It gives rise to a 
second-order possibly nonlinear differential equation in a vector field along a geodesic, see 
Definition 2.3. Solutions to this differential equation are called nth order Jacobi vector fields, 
since they arise naturally as the acceleration vector fields of geodesic variations. If there are 
consecutive zeroes of an nth order Jacobi field Y” along y, Y” (0) = 0, Y”(a) = 0, a > 0 
it means that there are geodesics emanating from y(O) which meet to nth order at Y(Q). 

This makes the results applicable in physics. For instance, it applies to the motion of a 
particle on a surface in a potential, because here the equations of motion are the geodesics 
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of the Jacobi metric. We are thus able to detect the occurrence of almost meeting points for 
orbits of the equations of motion. 

The main theorem in Section 3 proves necessity and sufficiency conditions for an 
nth order Jacobi field to be the variation vector field of a variation through normal geodesics 
to a submanifold P. If an nth order Jacobi field Y” along the geodesic y satisfies these con- 
ditions at y(0) = p and has at a > 0 a zero Y”(a) = 0 then using Theorem 3.2 it follows 
that there are geodesics normal to P meeting at y(a) up to nth order. This is the geometrical 
significance of Theorem 3.2. Section 4 shows that nth order Jacobi fields describe the nth 
derivative of the exponential map. 

At each p E M there is a unique m geodesic CY : I + M having ith acceleration 
vi E TpM,i = 1, . . . . m - 1, see Proposition 5.2. m geodesic variations give rise to m 

Jacobi fields as variation vector fields. These m Jacobi fields are solutions to an mth order 
linear differential equation. So m Jacobi fields Y are determined by m initial velocities 

Vi=Y(‘)(O), i=O ,..., m-l. 

Unlike the situation with Jacobi fields there are always nonzero m Jacobi fields, m 1 3, 
which has consecutive zeroes, see Proposition 5.6. The second main theorem is the index 
Theorem 5.10. It gives upper and lower bounds for the focal multiplicity along an m geodesic 
y : I + M, lR+ c I, m normal to a submanifold P of a flat Riemannian manifold M. More 
precisely it is proven that the space of tangential m Jacobi fields arising as variation vector 
fields of variations of y through m geodesics m normal to P and vanishing at b r 0 is a 
vector space V(b). The dimension of V(b) is less than or equal to the algebraic multiplicity 
of b and 

index - +,-I)(,,) I c dim V(b), 
bcR+ 

where S,(,-~~(u) is the shape operator of P relative to YCm-‘)(0). 

2. nth order Jacobi fields 

Let ~7 : I x J --+ M denote a smooth two-parameter variation. Define 

We start with the definition of the Jacobi map F,, . 
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Lemma 2.1. There exists a unique, jibre preserving, smooth map 

3n-1 

F,:$TM+TM 
i=l 

such that 

t-,(0,0) = F,((a,,...,~,~-~,~f,...,~,fl-l,,~fr,...,~~~,~-l)(O~O)) 

for every smooth two-parameter variation 6. 

ProojI We claim that 

j-l 

UsitsJ = Usi+jr + c (R(at, ~s)~si+k)SI-l-k 
k=O 

for all i, j > 1. For j = 1 we have 

Os;ts = a,!+l, + R(at, D,)cJ,l. 

So the claim is true for i E N and j = 1. Now fix i E N and assume the validity of the 
claim for j E N. Then 

j-l 

~,i,,j+l = ((T,if,j)S = 

i 
asi+,, +  

‘C 
(R(Ot, Os)C,i+k),j-1-k 

k=O 1 s 

j-l 

=Csi+J+ll + R(0t, Cs)0,i+j + C(R(Ct, Usb,i+k),,-k 

k=O 

j+l-1 

= CJ,i+j+lf + c (R(Ct, Cs)Dsi+k)Sj-k. 
k=O 

The claim follows. 
Our second claim pertains to the existence of a smooth fibre preserving map 

2(i+j)-I 

Hij : cl3 TM + TM, iLO, jll, 
k=l 

such that a,i,,, = ~,,+j,+Hij(~~, . . . , Usi+j-l, at, . . . , a,i+j- I I) for all smooth two-parameter 
variations f_r. 

Clearly HOI = 0. Also Hu2(ut, WI, ~2) = R(tot, ut)vt. Assume Huk has been defined 
fork= l,..., j. 

Fix p E M and let (U, @) denote a chart around p. We can assume Im a c U and let 
t = 4 o o. Verify by induction that there exist smooth maps 

hi : 4(U) X (I%“)’ + T3lM, ki 1$(U) X (Rn)i-’ + R”, i L 1, 

such that 
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R,y, o CJ(S. t) = hi (T(s, t), . . . , asi 3s. t)), 

s7 

aiLls 

as, (S, t)’ = s(S, t) + ki(T(S3 t)3 . . . 3 - asi_, 63 t)). 

Using the ki it is easy to see that given ~1, . . . , Ui E T, M for some q E M there exists a 

two-parameter variation CJ such that a, (0.0) = ~1, . . , CT,, (0,O) = Ui. Now define 

Hi(Ul...., Vi)= 
1 

R oo(O,O), i = 0, 
R,, oa(O,O), i > 0. 

In local coordinates when q E U 

Hi(U]. . , Vi) = hj(4(q), . . . 1 asi “I’(& t)). 

Using the ki we can inductively show the existence of smooth ,naps 

I& : c$(U) x (WY -+ R”, likli, 

such that 

akr 

hence 

K(Ul,..., vi) = hit@(q), . . . t li(G(q)v Uf3.. .Y Uf)). 

This shows that H; is well defined and smooth. Now 

= %+‘I + 2 c &k, (o;& , qrkj+l )Dsk+k4 

k=l cB=, k;=j-k 

So we can define 

Ho(j+l)(ul,. ., uj, ~0,. . . , Wj) 

=k c ffk,(Ul,...,Uk,) 

k=’ Cf=, ki=j-k 

(wkz + ffok2(UI,. . . , Ukz-I, WO, . . . , w/c-I), Wk3+l)wk+k4. 

So we have defined Hoj for all j 1 1. 
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Using the first claim we see that 

Thus 

Hij(Ul3.. .t Ui+j-I, WO9.. .t Wi+j-I) 

j-l 

==c c ffk,(vl,...t uk,) 

k=” cf=, ki=j-k-l 

(Wk2 + HOkz(uI,. . . 3 ukz-13 WOt *. . 3 Wkz-l), Ukg+l)Ui+k+kq. 

Let U1 , . . . , Uk, Wg, . . . , Wk, X0, . . . , Xk E TpM. Arguing as above we can verify the exis. 

tence of a two-parameter variation CT with 

&(o,o) = Ul, . . . ,O,k(O,o) = uk, 
q(O,O) = w(), . . ,cJ,k,(O,O) = Wk, 

Ott (0, o)= X0, . . . , ~ll,k (0, 0) = xk. 

As above we can argue that the map 

2k+l 

H;:$TM+T;M 
i=l 

defined by 

H;(uI, . . . , Uk, WO, . . , Wk) = Rfsk 0 (T(o, 0) 

is well defined and smooth. Now we can compute 

n-l 

G(O?O> = c ffk, (as, . . . ( %k, ) 

j=O xki=n-I-j,kz#n-I 

j=l xk;=n-l-j 

(C’&+I 3 a,&r + HOk3Cast . . . 3 ~,k3-lr))~,j+k4 

+ c f&h,..., ask,) 
xk,=n-1-j 
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+ c Hk, (a.~, . . . , ask, ) 

Cki=n-l-j 

(c.ykz+lr~s%, + ffok,k’s, 3 o;krl,))~,,,+k,, + Hjk,(a.,, . . . . U,v,+k4--lt) 

= Fn((as, . . . , asn-l. or, . . . . qvn-i,, a,,, , urtfsn. ,)(O, O)), 

which shows that F,, is well defined and smooth. 

Corollary 2.2. For every j > 0 there exist a unique$bre preserving map 

2j+l 

Gj:@TM+TM 
x=1 

such that 

u,$,+l, = ntsj+l +Gj(~~,...,~,/,~r....,~,,,) 

,for every two-parameter variation B : I x J + M. 

Proot Just let Gj = Ho(j+l) from the proof of Lemma 2.1 

59 

Now let y : I + M denote a geodesic in (M. g). 

Definition 2.3. An nth order Jacobi field along y is a map 

Y” = (Yl.. . 1 Y,) : I --f (TM)” 

such that each Yk is a smooth vector field along y with 

Y;(t) = R(Yk, Y’)J”(t) + Fk((Yt, . 9 y&l, )“. y;, . . . . y;_,, 0, . . , O)(f)) 

forallt E IandallkE (l,...,n). 

Proposition 2.4. Given VI, . . , v,, WI, . . , w, E T,,(O) M then there exists an nth order 
Jacobijeld Y” along y such that 

Yj(0) = Vi, Y;(o) = w;, i = l,...,n. 

If X” : I + (TM)” is an nth order Jacobifield along y satisfying 

Xi(O) = Vi, X((0) = wj, i = l,...,n, 

then Xn = Y” 

Proot Straightforward. 0 

The following proposition shows that nth order Jacobi fields arise as the acceleration 
vector fields of geodesic variations. In fact: 
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Proposition 2.5. Let u : I x J + M denote a smooth geodesic variation of the geodesic 
y : J + M with acceleration vectorjelds 

vi 0) = a.yi (0, t1, i = I,...,n. 

Then V” = (VI, . . . , V,) is an nth order Jacobijeld along y. 

ProoJ Assume for k 2 1 that 

_ k-l k-l 

ffsktt = c (R(as, ~t)~,jt),$-i-l + c (R(~.Y, ~tb,i)t+-/ (2.1) 
j=O j=I 

agreeing that a sum with a smaller top index than bottom index is zero. For k = 1 this is 
true by [4, p. 1231. But then 

k+l-1 k+l-I 

= c (R(c.s, ~tb,~t),k-i + c (R(o.s, ~tbsi)t+/~ 
j=O j=l 

Now (2.1) follows by induction. Finally 

o,&,(O, t) = R(DSk, ~t)~t f Fk((U,, . . . , ask-l, at,. . . , O;k-It, 0,. . . , o)(o, t)). 

The proposition follows. 0 

3. Endmanifolds 

Now let P denote a semi-Riemannian submanifold of M”. 

Lemma 3.1. There exists a smooth map 

Qj: @'-'TP -+ TPM, j? 2, 

1 TP + TpM, j = 1, 

such that 

norcz(j) = L?j(o’, . . , tancu(j-‘)) 

for all smooth curves a! : .I + P c M. Here uck) denotes k times induced covariant 
difSerentiation in M of a. 

ProojI Clearly 521 = 0 and &(a’) = fT(cr’, cr’), where I7 is the second fundamental form 
of P. 

Take a chart (U, 4) on M around some p E P such that 
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Verify by induction that there exist smooth functions 

hi 1 f@(U) X (Rn)i-’ --j R” 

such that 

,(;,4 d’(4 0 a) = 
dv’ 

Given LI) . . . . , Uj E Tq P then there exists a smooth curve a! : J -+ P with 

tan a(‘)(O) = ui, i = l,..., j. 

Define 

Qj(Vl.. , Uj) = nor&)(o). 

Using the hi verify the existence of smooth maps 

ki : 4(U) X (Rn)i-l 3 Rn 

such that 

d’(@ 0 a) 
dv’ 

= ki (4 0 (Y, o?. . . . , tan oCi)@). 

In coordinates (3.1) becomes 

d - (@~a) i 1 
.Rj(Vl, . . , Vj)'=tlOrhj 4 OCX', . . . , 

&)-I 

=nOrhj($(q), V;“, . . . , kj-l($(q), . . . Uf_,)), 
which shows that the C2j are well defined and smooth. The lemma follows. 

hl 

(3.1) 

Now let M : I -+ P denote a smooth curve in P with 

o”)(O) = Vi(O), i = 1, . . , n, 

where (VI, , V,) is an nth order Jacobi field along the geodesic y : J + M, normal to P 
at 0. Here J is a closed interval. Define inductively normal parallel vector fields A 1, . . A, 
along CX. Let A1 be the normal parallel vector field along cx with Al (0) = y’(O). When A; 
has been defined let Ai+l be the normal parallel vector field along y with 

Ai+l(O) =nor V;(O) - Gi_l(VI(O), . . , Vi-l(O), 

i-l 

Y’(O), v;(o), . . , V/-l (0)) - CKi.iAj\T”(O) . 
I=0 I 
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Theorem 3.2. An nth order Jacobifield V” = (VI, . . . , V,,) along a geodesic y : J --+ M 
normal to P at 0 is the acceleration vector$eld of a smooth variation o through normal 
geodesics with initial curve a! iff 

tan(y!(O) - Gi-l(Vl(O)t . . . , K-I@), y’(O), . . . , V/-l(O))) 

= (3.2) 

nor Vi (0) *= G?i (tan Vi (0), . :. , tan&-t (O)), i = l,..., n. 

Remark 3.3. An nth order Jacobi field V” satisfying (3.2) is called an nth order P Jacobi 
field along y. 

Proo$ Let 0 : I x J denote a smooth variation of geodesics normal to P with initial curve 
(Y. Then 

a(u) = a(v, 0) E P, v E I. 

We have seen that 

nor Vi (0) = nor o@)(O) = 52i (tan (2’(O), . . . , tan a(‘-l)(O)) 

= Oi(tan VI (0), . . . , tan Vi-1 (0)). 

Take a normal parallel basis Ek+t , . . . , E, along CX. We know that 

af(u* O) = 2 gj(U)Ej(v) 

j=k+l 

for some smooth functions 

gj 1 I + 02, i=k+l,..., m. 

Leibnitz’ rule gives 

i 
Otsi (U, 0) = FE K. g!“‘($E!i-S)(v). 1,s J J 

j=k+l s=O 

For i = 1 

tan V;(O) = 2 gj(O)tan E;(O). 
j=k+l 

Since 

at (0, 0) = 2 gj(O)Ej(O) = Y'(O) 
j=k+l 

(3.3) 

we find tan V,‘(O) = tan A’, (0). We claim that 
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m 

c gj”(O)Ej(O)=nor Vi’(O)-Gi_~(V~(O),...,V~_~(O),~‘(O),....V~_~(O)) 
j=k+l 

i-l 

-C Ki,l *Or AI::"(O) = Ai+t (0) 
I=0 

for all i = 1, . . . n. For i = 1 this is 

m 

c gj(O)Ej(O) = nor V;(O) - nor A; (0) = nor V,‘(O) = AZ(O). 
j=k+l 

Assuming the claim is true for all i < i, 5 n we find 

i,-I 

nor vil(o) = nor{qtsl* (O,O)} = nor vi:(O) - C(R(a,. at)q,r),Y,,-i-r 
I=1 1 

= nor 
I 

2 2 Ki,,ig:“(O)E”*-j’(O) 
j=k+l i=O 

by (3.3). Hence 

nor{Vi’+(O)--Gi,-r(Vr(O),..., Vi,-t(O),y’(O), . . . . Vi/i:_,(O))1 
m In i,-I 

= nor c g~‘*‘(O)Ej(O) + nor C C Ki,,ig,!‘)(O)E,!‘*-‘)(O) 
j=k+l j=k+l i=O 

= 2 ~~‘*‘(O)Ej(O) + ‘2 Ki,,i nor A)$“(O) 
j=k+l i=O 

and from this the claim follows. Finally 

tana,,~~(O,0)=tan{V~(O)-G~-~(V~(O),...,V~-~(0),y’(O),...,V,’_,(O))) 

= 2 2 Ki.,g~"(O)tan Ej'-"(0) = 2 Ki., tan Af;:‘(O). 
j=k+l s=O .s=o 

To prove the converse statement let V” = (VI, . , V,) denote an nth order Jacobi field 
along y satisfying (3.2). 

We claim that there exists a normal vector field Z along cx such that 

Z(0) = Y’(O), 

Z(‘)(O) = V/(O) - Gi-l(VI(O). . , Vipl(0). y’(O), . , V,‘_,(O)), i = I....,n 

Define 

Then Z(0) = y’(O) and 
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Z(‘)(O) = 2 Ki,lAfi<')(O) 
I=0 

i-l i-l 

= Ai+] + nor C Ki,lA/\y’)(O) + tan C Ki,lA/i:‘)(O) 
I=0 I=0 

=nor(I$(O) - Gi_I(Vl(O), . .., Vi-l(O), v’(O), . . ., V,‘_,(O))] 

+tan{V/(O) - Gi-r(Vt(O), . . . . vi-r(O), Y’(O), . . . , y’t(O))). 

The claim follows. 
Now define 

a(~, t> = exp(tZ(s)>, (s, r) E J x I 

by shrinking J if necessary. Define acceleration vector fields Yi (t) = asi (0, t), t E I. Then 

Yi(O)=CZ(‘)(O)=Vi(O), i=l,...,n 

and 

i-l 

Y/(O) = Dsi,(O, 0) = 0,,i (0,O) + C(R(C7s, C7t)0,/),i-L-1(0,0) 
l=l 

= Z(‘)(O) + Gi_l(Vl(O), . . . , K-1 0, y’K% . , q-1 (0)) = qo>. 

Since (Yt , . . . , Yn) is an nth order Jacobi field by Proposition 2.5. we find that Y” = V” 
according to Proposition 2.4. The theorem follows. 0 

4. Geometric derivatives 

Let F : (N, h) --+ (M, g) denote a smooth map between semi-Riemannian manifolds. 
We shall define the jth geometric derivative of F 

djF:&X’ + TM. 
i=l 

To this end let ~1, . . . , vj E T,N. There exists a smooth curve cx in N with 

CXCi)(0) = ui, i = 1, . . . , j. 

Let y = F o a and define 

djF(v,, . . . ) Vi) = y”‘(0). 

Verify by induction that in local coordinates 

y(i) a’F da j’ &$i 

= axj, . . . axi2 ds ” 
. ds + hi(Ct, . . . , CXci)), i = I,..., j 
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for some smooth functions 

hi:UX&R”4W 
k=l 

showing that dj F is well defined and smooth. 

Proposition 4.1. Let p E M andx E D(expp) c T,,M. For VI, . . . , vj E TYTpM, we have 

V’(l) = dj expp(vl, . . . , uj), 

where Vj is the unique nth order Jacobijield along yx such that 

Vi(O) = 0, V,‘(O) = Gt-l(O, . , 0, v’(O), . . . , V/_,(O)) + vi, i = I...., j. 

ProojY Define 

which is a geodesic variation of yX. Then Vi(t) = (o,(t, O), . . , oSj(t, 0)) is an nth order 
Jacobi field along yX with 

Vi(l) = (d’ expp(vl), . . . , dj expp(vl, . . . , vj)). 

Also 

V/(O)=or,i(O,O) + Gt-l(O,. . .,O, y’(O), . . , V;_1(0)) 

= Vi + Gt-l(O, . . . , 0, y’(O), . . . , V,‘_,(O)). 

The proposition follows. 0 

5. m geodesics 

We start with: 

Definition 5.1. An m geodesic, m 2 2, is a smooth curve CI : I -+ M such that CY(~) = 0. 

Then: 

Proposition 5.2. Given ~1, . . . , urn-1 E TPM, then there exists a unique m geodesic 
a! : I --+ M such that 

a(‘)(O) = vi, i = 1, . . , m - 1. 
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Proo$ Let (U, r$) denote a chart around p. Verify by induction that for all j z 2 there exist 
smooth functions 

hj :4(U) X (lR”)jel --f (Rn)j 

such that 

for all smooth curves B : I + M through j?(O) E U. Define the vector field 

x : f+(U) x @y-l + (wy, 

X(ul,. .., u,) = (4, . . . ,um, -hm(ul, . . . ,u,jj. 

Now the proposition amounts to the existence and uniqueness of a local flow for the smooth 
vector field X. 

There is a unique m geodesic Yv, ,...+,_, : J + M such that: 

(1) v:,,.,,,“m_,(0) = Ul,. . .1 vu’~.:,l?,_,w = &r-l. 
(2) If a! : .I* + M is an m geodesic with 

o’(0) = 211, . . . ) a’“-“(o) = Q-1, 

then J1. c J and o is equal to the restriction of yv, ,,._, “,,_, to J*. 
Yvl ,,..,,,_, is denoted the maximal m geodesic satisfying (1). 

Define 

m-l 

Nm=$TM. 
i=l 

We can now define a smooth vector field X on N* by 

X(Ul,..., hn-1) = [Y:, ..__, “,_, +. . + Y,(~.:,‘~Jo. 

X is the m geodesic spray. 
Now let 01 : I + A4 denote an m geodesic. The m Jacobi differential equation is the 

linear differential equation 

m-1 

y(m) = c c Rtk, (y(kz), a(l+k3))(y(i+k4). 

i=’ Cz=, kp=m-l-i 

A smooth vector field Y : I -+ TM along cr satisfying this differential equation is called 
an m Jacobi field along o. 0 

Proposition 5.3. Given wg, . . . , w,,, _ 1 E T,(o) M, then there exists a unique m Jacobijeld 
Y along (Y such that 

Y(‘)(O) = Wi, i=O,...,m-1. 
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Example5.4. M=R~.Forvr,...,v,_t ??T,,Mwehave 

61 

m-’ 1 
VU, ,..., Um-,tt) = C Zt'Vi, t E IR. 

i=o 

IfAl,..., A,_1 are parallel vector fields along (Y, then 

m-1 

Y(t) = C t’Ai(t) 
i=O 

is an m Jacobi field. 

Proposition 5.5. The variation vectorjield of a smooth m geodesic variation 

x:IxJ+M 

is an m JacobiJield. 

Let y : I --, M denote a nonconstant geodesic and m 2 3. 

Proposition 5.6. For all E E I n R+ there exists an m Jacobi jield Y # 0 along y such 
that Y (0) = 0, Y(E) = 0. 

Proof. Define 

m-l 

B(l) = y 0 h(t), h(t) E I; h(t) = C haiti 
i=O 

for suitable real constants ai. Notice that 

#I”)(t) = y’ o h(t)h(‘)(t), h(t) E I, i = 1,. . . , m - 1, 

hence B(“‘) E 0, so /J is an m geodesic with #?(‘)(O) = ai y’(0). 
Define 

Lm(c) = {m Jacobi field Y ((y’ 1 Y(0) = 0, Y(C) = 0). 

Our aim is to show that this vector space is nontrivial. To this end define smooth m geodesic 
variations 

xi(s. t) = Y(S@_‘6 - t’) + t), i=2,....m-1 

with variation vector fields 

Yi@) = g(o, t) = y’(t)P’(r - t). 

They are m Jacobi fields in view of Proposition 5.5. with 

Yi(0) = 0, Yi(E) = 0. 

The proposition follows. 
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Corollary 5.7. dim Lm(t) = m - 2. 

Prooj Yz,..., Y,,_ 1 are clearly linearly independent. Define 

Y, = span(Ye = y’, Yt = tv’) 

and verify that 

Lm(c) @ Y, = (Y m Jacobi field11 v’}. 

The right-hand side is an m-dimensional vector space and Y, is two dimensional, hence 
the corollary. Cl 

Corollary 5.8. When M isjat, then 

dim(m Jacobi field Y 1 Y(0) = 0, Y(E) = 0) = n(m - 2), 

wherec E InIX+. 

Now let P denote a smooth semi-Riemannian submanifold of M of dimension dim P L 1. 

Definition 5.9. An m geodesic o : I --+ M is m normal to P provided 

a(‘)(O) I T,(o)P, i = 1,. .., m - 1. 

An m geodesic C, m normal to P with Iw+ c I gives rise to linear maps 

SC(i)(u) : To(O)P + G(O)P, i=l,...,m-1 

defined by 

s,(i)(e)(u) = -fl(u, O”‘(O)), u E G(O)P, 

where n is the tensor: 

n(X, Y) = tan VxY, x E E(P), Y E S(P)i. 

S(P) denoting the space of smooth vector fields in P and 3 (P)’ denoting the space of 
smooth vector fields along the inclusion map of P in M and orthogonal to P. 

For b E R define a linear map Lb : T,(O) P + T,(O) P by 

m-11 
Lb(V) = ‘v - c zb’S,ci,~O~(u). 

i=l 

It gives rise to the polynomial 

Q(b) = det Lb. 

The multiplicity of b E R as a root in Q is denoted cr(b), the algebraic multiplicity of b. The 
index of a linear map L is the number of eigenvalues with negative real part. It is denoted 
index L . 
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An m Jacobi field V is tangential provided 

i-l 

V”‘(0) + C(R(V, ~‘)a(~))~;-,-~ (0) E T,, P 
k=l 

foralli= I,...,m-1. 
Now let M denote a flat manifold, which is m geodesically complete. 

Theorem 5.10. The space of tangential m Jacobi jelds arising as variation vector fields 
qf smooth variations of o through m geodesics m normal to P and vanishing at b > 0 is a 
vector space V(b) and 

dim V(b) 5 a(b). 

If M is Riemannian then 

index - S,c,~n(u) 5 c dim V(b). 
beiWi 

Proofi We claim that in a possibly nonflat semi-Riemannian manifold M an m Jacobi field 
V on ~7 is the variation vector field of a smooth variation x of 0 through m geodesics m 
normal to P iff 

V(O) E T,(o)P, 
i-l 

tan V(‘)(O) + x(R(o’, V)o(k))ll-~-k (0) 
k=l I 

= I7(V(O),a(‘)(O)), i = 1,. . . , m - 1. 

If V is the variation vector field of such an x : I x J + M define 

G(s) = $‘(O, s), sEJ, i=l,..., m-l. 

(5.1) 

It is a smooth vector field along o(s) = x(0, s), s E J orthogonal to P. Also 

i-l 
V”‘(0) = Z:(O) - x(R(o’, V)a (k) ),i-ILm(0. 0). 

k=l 

Since (Y’ E T P (5.1) follows. 
If V is an m Jacobi field along CJ satisfying (5.1), let (Y be a smooth curve in P with 

a’(O) = V(0). Also let Ai and Bi denote normal parallel vector fields along a! with 

A;(O)=a(‘)(O), i = 1, . . . . m - 1, 
i-l 

B;(O) = nor{ V(‘)(O) + x(R(o’, V)oCk)),i-l+k (0)). 
k=l 

Here we agree that a sum with top index strictly smaller than the bottom index is zero. The 
vector fields above give rise to normal vector fields 

Z;(U) = Ai + uBi(u), i = l,...,m- 1 
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and an m geodesic variation 

x(s, r) = W,(S) ,..., Z,-,(S)@), SEJ, tEI 

of u through m geodesics m normal to P. Now 

xriS (0,O) = Z;(O) = A; (0) + Bi (0) 
i-l 

= fl(v(o), a”‘(O)) + nor V(‘)(O) + C(R(d, V>O(k)),,_,_k(0) 
k=l 

i-l 

= V(‘)(O) + C(R(n’, V)dk)),,-l-k (0). 
k=I 

If Y(t) = x,(0, t), t E 1 then 

Y(0) = X,(0,0) = o’(0) = V(0). 

and 

i-l 

Y(‘)(O) = Xfi,(O, 0) - C(R(X,, Xs)X+)fi-l-k(0, 0) = V(‘)(O). 
k=l 

By Propositions 5.5 and 5.3 the variation vector field of x is V and the claim follows. It 
follows from the claim that V(b) is a vector space for all b > 0. An m, P Jacobi field along 
o is an m Jacobi field V satisfying (5.1). a(b), b # 0, is an m focal point for P along o 
provided there exists an m, P Jacobi field V # 0 along o with V(b) = 0. Now suppose 
that M is flat. 

Our next claim is that g(b), b > 0, is an m focal point for P along 0 iff Q(b) = 0. Also 

dim V(b) = dim ker Lb. 

If Q(b) = 0 then Lb is singular and there exists a nonzero u E ker Lb. Take parallel vector 
fieldsAi,i =O,..., m - 1, along o with 

1 
Ao(0) = ‘II, Ai = -;S,(i)(u)(u), i = l,...,m- 1. 

By Example 5.4 

m-1 
V(t) = C t’Ai(t), te:I 

i=O 

is an m Jacobi field satisfying (5.1). Notice that the parallel vector field 

m-l 
Y(t) = C b’Ai(t), t E 2 

i=O 

vanishes identically because Lb(U) = 0, hence V(b) = 0. It follows that 

dim V(b) L dim ker Lb. 
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On the other hand 

V(b) + ker Lb, v++ V(O)=v 

is a linear injection so dim V(b) = dim ker Lb. If on the other hand, V # 0 is an m, P 
Jacobi field along c with V(b) = 0 then 

m-1 

V(t) = C t’Ai(t) 
i=l 

for suitable parallel vector fields Ai along c with 

1 
V”‘(0) = -~S,(“(,,(u), u = V(0). 

So u # 0 and u E ker Lb. Hence Q(b) = 0. This verifies the second claim. 
Now let a = dim V(b). If a = 0 then dim V(b) 5 a(b) is obvious, otherwise let 

ut, . , u,, . . . ( v, be a basis for T,(o,M such that ut , . . . , va is a basis for ker Lb. The 
matrix representation for L, in this basis is denoted lij (s) so 

L,(Ui) = elji(S)Uj. 
j=l 

Hencelij(b)=Oforallj=l,..., aandalli=l,..., n.From 

Q(s) = c (-l)Sig”“ha~,~(~)~~ .l,,(,)(sh 
ncs, 

We deduce that 

Q(b) = 0,. . . , Q(-(b) = 0. 

We conclude that a 5 a(b) and the first inequality follows. 
To prove the second inequality define for a topological space X 

where x - y iff there exists 0 E S, such that xi = y,(i) for all i = 1, . . . . n. Denote an 
equivalence class by ny=txi. Also define a map 

T : Cn+‘\(cn = 0) = B,,+l -+ SPn(C), (co,.... C,)H fp;. 
i=l 

where 
n n 

2 CiX' = C* &z -Ai). 
i=O i=l 

We claim that this map T is continuous. To see this let 

Jrn+l : C”f’\{O) * CPfl 



72 J.C. Larsen/Journal of Geometry and Physics 20 (1996) 54-76 

denote the natural map and define 

A = n2(B), B = ((a, b) E @2\(O) I a # 01. 

The map 

G : SF’“(A) + SF’“(C), fi[&, bil H fibi/& 
i=l i=l 

is well defined and continuous. The map 

s : CP” -+ SP”(CP’), [co,... 3 Cnl H fiiai7 bil9 
i=l 

where 

fi(UjX - bi) = ecixi 
i=l i=O 

is continuous by [ 11. Let A,,+1 = x,+1 (&+I). Notice that 

T = G 0 s 1 A,,+, 0 nn+l 

is continuous as claimed. 
Since T is continuous index Lb = 0 near b = 0. Let ht (b), . . . , An (6) denote the n 

real eigenvalues of the self-adjoint linear map Lb. Also let 0 < 61 < . . . < bj denote the 
positive zeroes of Q : 

dimkerLb, =oi > 1, 

dim ker Lb = 0, b#bl,...,bj, b?O. 

Ifthereexistsani E [l,..., n) and b E IO, bl] such that hi(b) < 0 then by continuity of T 
above there exists an i and a b, E 10, b[ such that ki (b,) = 0, a contradiction. Therefore 

index Lb = 0, b E [O, hl. 

Similarly if index Lb > 41 for a b E ]bl, b2] there exists pi,, . . . , pik, k > al such that 

iPi, (b) < 0, . . . , Qik (6) < 0. 

By continuity of T this implies that there exists /3il, . . . , /9ik such that 

hSi, (bl) = . . . = hpIk (bl ) = 0. 

A contradiction and 

index Lb 5 ~1, b E lh, hl. 

By induction 

index Lb 5 CYt + . ‘. + ‘k!k, b E lb/c, bk+ll 
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fork=l....,j-land 

index Lb 5 at + . . . + ffj, b > bj 

Now let A denote a subspace of dimension index - Socrn-~~(o) on which the scalar product 

(u. WI ++ (--S,~m~~,(u~u, W) = b(u. w) 

is negative definite. On the unit sphere S(A) in A we have 

-b(u. u) > C, u E S(A) 

for some constant c > 0. Hence 

(Lb(u), u) = bm-’ 

m-2 1 -c -bJ-(m-‘)(S,~,,(o)u, u) < 0 
j=O j! 

) 

for all b greater than some bo > bj. Hence for b > bo we have 

index - S,cm~~~(Oj _ < indexLb 5 QI +... +aj = C dim V(b). 
bM+ 

The theorem follows. 0 

Corollary 5.11. The space of m Jacobi$elds arising as variation vectorfields of smooth 
variations of u through m geodesics m normal to P and vanishing at b > 0 is a vector 
space W(b) and 

dim W(b) = dim V(b) + (m - 2)(n - p), dim P = p, 

index - S,C,-I)(~) ( c (dim W(b) - (m - 2)(n - p)). 
b&+ 

ProojI W(b) is a vector space due to the first claim in Theorem 5.10. First notice that 

W(b) = WT(b) $ Wl-(b), 

where 

WT(b) = (Y m, P Jacobi field along0 ) Y(‘)(O) E Tp P, 

i=O ,..., m-l, Y(b)=O), 

W’(b) = (Y m, P Jacobifieldalonga (Y(‘)(O) E TpP’, 

i =O,... ,m - 1, Y(b) = 0). 

To see this let Y E W(b) that is 

m-l 
Y(t) = c t’Ai(t) 

i=O 
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for suitable parallel vector fields Ao, . . , A,,_ 1. Write uniquely 

Ai(0) = Ui + wi, Vi E TpP, Wi E TpP’ 

and let A! and A; denote the parallel vector fields with 

Af (0) = vi, A?(O) = wi, i=O,...,m-1. 

Then 

m-1 m-l 

Y(t) = c +A;@) + c +A;@), 
i=O i=O 

where the first sum is an m, P Jacobi field in WT(b) and the second sum is an m, P Jacobi 
field in W’(b). Let E,+l, . . . , E, denote parallel vector fields along 0 such that 

span{ E,,+I (0), . . . , E,(O)) = T, P’. 

Then 

V:(t) = tip’(6 - t)Ej(t), j=p+l,..., n, i-l=1 ,...) m-2 

is a basis for W’(b) and the corollary follows, since V(b) = WT(b). 0 

Now let cx : I + M denote an m geodesic in an arbitrary semi-Riemannian manifold. 
Given E > 0 in I define 

Y”(E) = (YmJacobifieldalongcr I Y(0) = 0, Y(E) = 0). 

Proposition 5.12. There exists E > 0 such that 

dim Y”(t) = n(m - 2) 

for all t E 10, c[. 

ProojI Notice that 

exp,“h, 0,. . ,O> = expp(xl), XI E D(exp& 

where 

expr(vl,..., hn-1) = Yu I,.... v,-, (11, 

whenever 1 belongs to the domain of definition of yv,,,,,, +_, . Letting xi = o(‘)(O), we 
deduce that there exists E > 0 such that 

dt exp:(tq, . . . , tm-‘X,-I) 

is an isomorphism for all t E [0, E[, since d exp,(O) is an isomorphism. 
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We claim that there exist linear mappings 

i-i 
hi : @TpM + TpM 

k=l 

such that 

V(t) = dexpF(rxt,. . . , t”-‘x,_~)(t~], . . . , tm-‘u,,_]), 

where V is the m Jacobi field along cz such that V(0) = 0, V’(0) = VI and 

V”‘(0) = Ui + hi(Ul, . . .) II-l), i =2,....m- 1. 

To see this define 

x : [0, l] x I --f NM, X(f,S) = (t(xt + SU]), . . . . tyx,_, + sum_])) 

and 

x(t, s) = expr(.Z(t, s)). 

The variation vector field of this variation is 

v(t) = dexpT((tut,. ...~“-‘u~-I)(~~ ,,,.., tm-~X,_,+ 

Clearly, V(0) = 0, V’(0) = VI and 

V”(0) = R(&, xr)xt(O, 0) + Xtrs(0, 0) = (x2 + su2)s (0) = U2 

so h2(ut) = 0. Assuming the existence of hj, j = 1. . . . , i - I 5 m - 2 compute 

i-l 

Xs,‘(o, 0) =x,lsa 0) +  Cmx,, x,b,e),~-l-k(0* 0) 

k=l 

i-l 

= Cxi +  SUi)s (0) - C R,kj (Xsr!q, X$3+1 )Xyk+k4 (0,O) 
k=l xk,,=i-1-k 

i-l 

=LJi-C C Rrk, (ukz + hkz(UI>. . . . uk2-I), Xk3+l)Xk+k4 

k=l xk,=i-l-k 

=Ui+hi(U1,...,Ui-l). 

The claim follows. Now define an n(m - I)-dimensional vector space 

Y”-’ = (Ym Jacobi field along y ] Y(0) = 0) 

and linear isomorphisms 

G : Y”-’ + TpMm-‘, Y H (Y’(O), . . ) Y’“-‘)(o)) 

and fort > 0 
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(tU1,...,tm-l %I-1) t-f (VI, v2 +h2(ul),...,u,-l +h,_,(v,,...,u,_2)). 

Then from what we have seen 

V(t) = dexpr(txl, . . . , t “-‘x,,_~)(H,-’ o G(V)) = K,(V). 

The rank of the linear map Kt is it for t E IO, c[ hence 

dimYm(t)=dimkerKt =n(m-l)-n=n(m-2). 

The proposition follows. 0 
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