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Abstract

This paper defines nth order Jacobi fields to be solutions to a second-order nonlinear differential
equation defined by the Jacobi map. nth order Jacobi fields arise naturally as acceleration vector
fields of geodesic variations. As a main theorem we prove necessity and sufficiency conditions
for an nth order Jacobi field to be the acceleration vector field of a variation of geodesics normal
to a submanifold. An m geodesic, m > 2, is a smooth curve whose mth covariant derivative
vanishes. We prove an index theorem giving bounds for the total m focal multiplicity along an
m geodesic m normal to a submanifold in a flat manifold.

Subj. Class.: Differential geometry
1991 MSC: 49L05
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1. Introduction

Using two-parameter variations in a smooth semi-Riemannian manifold (M, g) we prove
the existence and uniqueness of the Jacobi map
3n~1
Fo:@TM—>TM
i=1
from the 3n — 1 fold Whitney sum of TM to TM, see Lemma 2.1. It gives rise to a
second-order possibly nonlinear differential equation in a vector field along a geodesic, see
Definition 2.3. Solutions to this differential equation are called nth order Jacobi vector fields,
since they arise naturally as the acceleration vector fields of geodesic variations. If there are
consecutive zeroes of an nth order Jacobi field Y” along y, Y"*(0) =0, Y"*(@) =0,a >0
it means that there are geodesics emanating from y (0) which meet to nth order at y (a).
This makes the results applicable in physics. For instance, it applies to the motion of a
particle on a surface in a potential, because here the equations of motion are the geodesics
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of the Jacobi metric. We are thus able to detect the occurrence of almost meeting points for
orbits of the equations of motion.

The main theorem in Section 3 proves necessity and sufficiency conditions for an
nth order Jacobi field to be the variation vector field of a variation through normal geodesics
to a submanifold P. If an nth order Jacobi field Y" along the geodesic y satisfies these con-
ditions at y(0) = p and has at a > 0 a zero Y"(a) = 0O then using Theorem 3.2 it follows
that there are geodesics normal to P meeting at y (a) up to nth order. This is the geometrical
significance of Theorem 3.2. Section 4 shows that nth order Jacobi fields describe the nth
derivative of the exponential map.

At each p € M there is a unique m geodesic @ : I — M having ith acceleration
v € T,M,i = 1,...,m — 1, see Proposition 5.2. m geodesic variations give rise to m
Jacobi fields as variation vector fields. These m Jacobi fields are solutions to an mth order
linear differential equation. So m Jacobi fields Y are determined by m initial velocities

vi=YD0), i=0,...,m-1.

Unlike the situation with Jacobi fields there are always nonzero m Jacobi fields, m > 3,
which has consecutive zeroes, see Proposition 5.6. The second main theorem is the index
Theorem 5.10. It gives upper and lower bounds for the focal multiplicity along an m geodesic
y 1 - M, Ry C I,mnormaltoasubmanifold P of a flat Riemannian manifold M. More
precisely it is proven that the space of tangential m Jacobi fields arising as variation vector
fields of variations of y through m geodesics m normal to P and vanishing atb > Ois a
vector space V (b). The dimension of V () is less than or equal to the algebraic multiplicity
of b and

index — S, m-1(g) < Z dim V (b),
beR+

where S, m-1)(g) is the shape operator of P relative to y "~ (0).

2. nth order Jacobi fields
Leto : I x J — M denote a smooth two-parameter variation. Define

n—1

ro(s.t) =1 (R(05, 0105 )gn-1-;
j=0
n—1
+Z(R(aj‘7at)ayj)m"‘|_j - R(UJH,O'[)U[ (S, t)
j=1

We start with the definition of the Jacobi map F,,.
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Lemma 2.1. There exists a unique, fibre preserving, smooth map

3n—1
F:PTM > TM

i=1
such that
rs(0,0) = Fy((Os, ...y Ogna1, Oty o ooy, Ogn—ty, Otpy « o o, Oppen—1)(0, 0))

for every smooth two-parameter variation o.

Proof. We claim that
j—1
Oyirsi = Ogiviy + ) _(R(07, 0)0ik)gi-1k
k=0
foralli, j > 1. For j = 1 we have

Oi;s = 04+, + R(oy, 05)oyi.

So the claim is true fori € N and j = 1. Now fix i € N and assume the validity of the
claim for j € N. Then

j—1
Ogigsitt = (Ogigsi)s = (Usi+jt + Z(R(U,, O's)O'si-frk)sjA]-—k)
=0 - s
Jj—1
=0,i+j+1, + R(oy, 05)0gi+; + Z(R(U,, O5)0gi+k ) gj—k
k

=0
jHL=1
=0,i+j+i; + Z (R(01, 05)0i+k )ik
k=0

The claim follows. ‘
Our second claim pertains to the existence of a smooth fibre preserving map

20i+j)-1
Hj: @ ™M —>TM, i>0 j>1,
k=1
suchthatoyi,;; = 0yi+j,+H;j (0, ...,04+j-1,01, ..., 0,+j-1,) forall smooth two-parameter
variations o.

Clearly Hy; = 0. Also Hpa(vy, wy, w2) = R(wy, v1)vy. Assume Hy has been defined
fork=1,...,J.

Fix p € M and let (U, ¢) denote a chart around p. We can assume Imo C U and let
T = ¢ o 0. Verify by induction that there exist smooth maps

hi 1 9(U) x (R"Y — T{M, k:¢U) xR > R", i>1,

such that
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a't
Rioo(s, t) =hi(t(s,1),..., —(s, 1)),
ds!
gi-lg
"t gsivl
Using the k; it is easy to see that given vy, ..., v; € T, M forsome g € M there exists a
two-parameter variation o such that 05(0,0) = vy, ..., 0y (0, 0) = v;. Now define

o o't
o,i(s, )Y = ?ﬁ(s,t)-kk,-(t(s,t),.. (s, 1)).

R 0 0(0,0), i =0,

Hi(y..... o) =
AORRRD lRS;oa(O,O), i >0.

In local coordinates when g € U

o't
Hi(uy. ... v) = hi(@(@), ... 7= (s, 1)).
as
Using the k; we can inductively show the existence of smooth .naps
h:¢U) x ®Y - R 1<k<i,

such that

3]‘1' ¢ ¢
S 0.0 = k(@@ o] o).

hence
Hi(vr, ... o) = hi(@(@), ... Li@(@). v} ..., v))).
This shows that H; is well defined and smooth. Now

J
Oygj+t = Ogj+1, + Z(R(a,, O5)0sk)gi—k
k=1

J
=0+, + Z Z Rk (0, gky » O kg +1)0 hvky
=1 4 )
k=t Zi:l ki=j—k

J
:Gsf+]p+z Z Hkl(O'_y,...,O'Skl)
= 4 .
k=l Do ki=i—k

(Ogky, + Hok, (Osy oo Oghy=1, Oty oo oy Oghy—1, )5 Ophyt] )0 ity -

So we can define

Hogj+1) (i, ..., vj, wo, - .., W))

J
=Z Z Hy vy, .o, k)
k=l Z?:lki:j_k

(Wi, + Hoky (UL, + - -y Vkg— 1, WO, -+ -+ s Why—1)s Wha+1) Whetrky -

So we have defined Hg; forall j > 1.
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Using the first claim we see that

J
Ogiggj+! = Ogitj+l; + Z Z Hi (05, ..., 04)
—0 .
¢ OZs=1kf:f‘k

(O, + Hory (05, -+, Ohy=1, 07, s Oky—1,)s Oghy 1 )0 ithrky .
Thus

Hij (U1, .o, Vi1, W05 -+ - Wi j—1)
j—1
=Z Z Hy vy, ..oy vky)
k=0 4 . g
Zi:lkl:j_k_l

(Wiy + Hoky (V1 + - -5 Vkyg— 14 WO, + + +» Why—1)s Vky+1) Vitkfks-
Letvy,..., Uk, Wo, ..., Wk, Xp, ..., X € TpM. Arguing as above we can verify the exis-
tence of a two-parameter variation o with

05(0,0) = vy, ...,04(0,0) = vy,
0,(0,0) = wo, ..., 04,0, 0) = wy,
01 (0, 0)= xg, ..., 0,54 (0,0) = x¢.

As above we can argue that the map

2k+1
H :PrM—>1'M

i=1
defined by
Hl (W1, ., vk, wo, ..., wk) = Rk 00(0,0)
is well defined and smooth, Now we can compute

n—1

0,(0,0)22 Z Hkl(o's,-'-ao'sk‘)

J=0%" ki=n—1—jky#n—1

(O +1, Oy, + Hors (Osy ooy Oy=1))Ogjiths, + Hj,(os, ..., Ogj+ks=1,)

~1
+HX: Z Hkl](as,...,osk,,)

J=1Y ky=n—1-j
(O +1, Oy, + Hoks (05, - . -, Ogk3-1,))0j+ky
+ Y Hy(os..., 0w)
> ki=n—1-j
(Og1+ky, + Hiky (055 - o o5 Oghy,)s Ok, + Hows (05, -y Tok3—1,))0 vk
+ Z Hy (05, ..., 0 WOk t1, Oy ok3 )Tty

> ki=n—1-j
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+ Y Hy(O.... ow)

> ki=n—1-j
(Ogat1, Oy, + Hoky (O - oy Oka—1))0jvke, + Higy (05, ooy Ojrhgt,)
= Fp((Og,y ..., 01,01, oo Ogniy, Oppy ooy Oppen-1)(0,0)),
which shows that F,, is well defined and smooth. O

Corollary 2.2. For every j > 0 there exist a unique fibre preserving map

2j+1
G :Prm—-r1Mm
k=1

such that
Ogi+i; = Opjrt + Gj(0g, ..., 0y, Orv -, Oysi)
for every two-parameter variationo : I x J - M.
Proof. Justlet G; = Hyj+1) from the proof of Lemma 2.1. O
Now let y : I — M denote a geodesic in (M, g).

Definition 2.3. An nth order Jacobi field along y is a map
Y'"=.....): I > (TM"
such that each Y is a smooth vector field along y with
Y/ (1) = Rk, ¥ )W) + F((Yi, ... Yo, v Y Y000, 0)(1)

forallt € Tandallk € {1,...,n}.

Proposition 2.4. Given vy, ..., vy, wi, ..., wy € Ty)M then there exists an nth order
Jacobi field Y" along y such that

Yi0) =v., Y/0)=w, i=1,....n.

If X" : I — (TM)" is an nth order Jacobi field along y satisfving

Xi(0)=v;, X;(0)=w;, i=1,....n,
then X" =Y".
Proof. Straightforward. |

The following proposition shows that nth order Jacobi fields arise as the acceleration
vector fields of geodesic variations. In fact:



60 J.C. Larsen/Journal of Geometry and Physics 20 (1996} 54-76

Proposition 2.5. Leta : I x J — M denote a smooth geodesic variation of the geodesic
y . J — M with acceleration vector fields

Vilt) =0,i(0,1), i=1,....n
Then V" = (V1, ..., V,) is an nth order Jacobi field along y.

Proof. Assume for k > 1 that

- k=1 k-1
Ogrr = 3 _(R(05,00)0 )gt-i-1 + 3 _(R(05, 01)0j )ysim1- Q.1
j:() j:]

agreeing that a sum with a smaller top index than bottom index is zero. For & = 1 this is
true by [4, p.123]. But then

ask‘H” = a_yktst + (R(ass at)a_yk)! = (Gsktt)s + R(asv at)ajk[ + (R(as» at)ask)f
k+1-1 k+1-1
= Y (R(O5. 00, )i + 3 (R(G5.0)05) k-
—

j=I
Now (2.1) follows by induction. Finally
041 (0,1) = R(ogk, 01)o; + Fr((os, ..., 001,01, ..., 0u-1,,0,...,0)(0, 1)).

The proposition follows. a

3. Endmanifolds

Now let P dgnote a semi-Riemannian submanifold of M™.

Lemma 3.1. There exists a smooth map

0. . @ 'TP > TpM, j>2,
Pl TP > TeM, j=1,
such that
nora) = 2;(/, ..., tana¥ V)

for all smooth curves a : J — P C M. Here a'® denotes k times induced covariant
differentiation in M of «.

Proof. Clearly 21 = 0and §£25(a’) = I1(a’, a’), where [T is the second fundamental form
of P.
Take a chart (U, ¢) on M around some p € P such that

POU={(qeUlpr+1(g) =0,...,¢m(g) =0},

span -~
izkfl ..... m (0i(@)} = T, Pt geUNFe.
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Verify by induction that there exist smooth functions

hi  ¢(U) x (R - R

such that
i i1
Given vy, ..., v; € T, P then there exists a smooth curve o : J — P with
tanaV(Q)=v;, i=1,..., ]
Define
2y, . ... vj) = nora'/)(0). (3.1)

Using the A; verify the existence of smooth maps
kit ¢(U) x R ™ - R”
such that

d(¢oa)

g :ki(¢oa,a/¢,...,tana(i)"’).

In coordinates (3.1) becomes

j—1
Qw1 v))* =nork; (¢oa,..., ‘lM)

dvi-1
=nor hj(¢(@). v, ... k1@ ... v ),

which shows that the 2; are well defined and smooth. The lemma foilows. O
Now let« : I — P denote a smooth curve in P with
a0y =Vi(0), i=1,..., n,

where (V, ..., V,) is an nth order Jacobi field along the geodesic y : / — M, normal to P
at0. Here / is a closed interval. Define inductively normal parallel vector fields Ay, ..., A,
along c. Let A| be the normal parallel vector field along a with A;(0) = y'(0). When A;
has been defined let A; | be the normal paraliel vector field along y with

Ai+1(0) =nor { V/(0) — G;—1(V1(0), ..., V;i—1(0),

i1 ‘
Y0, VIO, ...V, ©O) = Y KAl O
=0
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Theorem 3.2. An nth order Jacobi field V' = (Vy, ..., V,) along a geodesicy : J - M
normal to P at 0 is the acceleration vector field of a smooth variation o through normal
geodesics with initial curve o iff

tan{V;(0) — Gi-1(Vi(0), ..., Vi1 (0), y'(0), ..., V1 (0))

i—1
= tan IZ K,-JA,('J:II)(O)] : (3.2)
1=0
nor V;(0) = £2; (tan V1 (0), ..., tanV;_ (0)), i=1,..., n

Remark 3.3. An nth order Jacobi field V" satisfying (3.2) is called an nth order P Jacobi
field along y.

Proof. Leto : I x J denote a smooth variation of geodesics normal to P with initial curve
a. Then

a@)=0c@,0)eP, vel
We have seen that

nor Vi (0) = nora”(0) = £2;(tana’(0), . .., tana "1 (0))
= $2;(tan V1 (0), ..., tan V;_; (0)).

Take a normal parallel basis E¢yy, ..., E, along . We know that
m
or(v,0) = Y gWEj(v)
j=k+1

for some smooth functions
g:I1—->R, i=k+1, ..., m

Leibnitz’ rule gives

O (,0) = 3 > Kisg"WE! ). (3.3)
j=k+15=0
Fori =1
m
tan V{(0) = ) g;(0)tan E}(0).
Since
m
5:(0,0) = Y g (OE;(©0) =y"(0)
J=k+1

we find tan V| (0) = tan A/ (0). We claim that
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m

Y 8 (O)E;(0) =nor { V/(0) = Gi—1(Vi(0), ..., Vi_1(0),¥'(0), ... V/_,(O))
J=k+1

i—1
—Y "Kinor A,";l”w)} = Ai11(0)

foralli = 1,....n.Fori = 1 this is

Z gj’- (0)E;(0) = nor V/(0) — nor A} (0) = nor V{(0) = A2(0).
J=k+1

Assuming the claim is true for all i < i, < n we find

iy—1
nor V; (0) = nor{o,. (0, 0)} = nor [Vi; 0) — Z (R(05, 04)0 1) gis—1-1 ’
=1

:nor{ i IZ*K,*,gj')(O)E('*_')(O)!

j=k+1i=0

by (3.3). Hence

nor(V; (0) — G, -1 (V1(0), ..., Vi, .1(0), ¥'(0), ..., V| _,(0))}

m m i,—l ‘ o
= nor ;1 g/ (0)E;(0) + nor ;1 X(; Ki,ig OE ™ )

ix—1

= Z 2" (0)E,(0)+ZK,*,norA(’*_')(O)

J=k+1

and from this the claim follows. Finally

tan o, (0, 0) = tan{V; (0) — G, (V1 (0), ..., Vi_1(0), ¥’ (0), ... V/_ (0N}

mod i1
- S Y Kl O E 0 = 5 a0

Jj=k+1s5=0 5=0

To prove the converse statement let V" = (V|, ..., V,) denote an nth order Jacobi field
along y satisfying (3.2).
We claim that there exists a normal vector field Z along o such that

Z(0) =y'(0),
ZH0) = V/(0) — Gi—1(V1(0), ..., Vi_1(0), ¥'(0), . .., Vi 0), i=1..... n.
Define

n

.
Zwy=Y_ i 1)!v"‘Ai(v)

i=1
Then Z(0) = y’(0) and
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z90) =Y Ki,A°7 0
=0

i—1 i—1 ‘
= Ai11(0) +nor Y Kiy Al (0 +tan Y KAl 0)
1=0 1=0
=nor{V/(0) — G;—1(V1(0), ..., Vi—1(0), ¥'(0), ... V/_1(0))}
+tan{V;(0) — Gi—1(Vi(0), ..., Vi_1(0), ¥'(0), ..., V/_;(O))).
The claim follows.
Now define

o(s,t) =exp(tZ(s)), (s,)edxlI
by shrinking J if necessary. Define acceleration vector fields Y;(t) = 0, (0,1).t € I. Then
Y;(0)=aP0)=Vi(0), i=1,...,n

and

i—1
Y/(0) =04, (0,0) = 0,3 (0,0) + Y_(R(05, 0)0y1)ii-1 (0, 0)
=1

=ZD(0) + Gi—1(V1(0), ..., V;i_1(0), ¥ (0), . .., V/_(0)) = V/(0).

Since (Y1, ..., Yy,) is an nth order Jacobi field by Proposition 2.5. we find that Y" = V”
according to Proposition 2.4. The theorem follows. a

4. Geometric derivatives

Let F : (N,h) - (M, g) denote a smooth map between semi-Riemannian manifolds.
We shall define the jth geometric derivative of F

d'F: é} TN - TM.
i=1
To this end let vy, ..., vj € T, N. There exists a smooth curve « in N with
aPO)y=v;, i=1,...,j.
Let y = F o « and define
& Fuy,...,v) =yY0).
Verify by induction that in local coordinates

. 3F  daft  dali .
- 77 T i he...,aD), i=1,...,

Y T A%, ox, A5 ds
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for some smooth functions

hiiUX Rn%Rm

i
k=1
showing that d’ F is well defined and smooth.
Proposition 4.1. Letp € M and x € [D(expp) CTyM.Foruvy, ..., v; € Iy Tp M, we have
Vi(l) = & exp, (v, ..., 1)),
where V/ is the unique nth order Jacobi field along yx such that
Vi(0) =0, V/0)=G;_1(0,...,0,y'(0),..., V/_ (0) + vi. i=1....,j

Proof. Define

J 1.

o(s,1) =exp (t <x+ E ,~'s’v,~ , (s,nyelxJ,
£ j
i=l1

which is a geodesic variation of y,. Then V/ (1) = (05(.0), ..., o,;(t,0)) is an nth order
Jacobi field along y, with

Vi) =@ exp, 1), ..., & exp,(v1, ..., v))).
Also

V/(0) = 0,4 (0,0) + G;_1(0,....0,y'(0), ..., V/_,(0)
=v +Gi_100,..., 0,¥(0), ..., V/_,(0)).

The proposition follows. o

5. m geodesics
We start with:

Definition 5.1. An m geodesic, m > 2, is a smooth curve « : | — M such that o™ =0,
Then:

Proposition 5.2. Given vy,...,vm—1 € T,M, then there exists a unique m geodesic
a1 — M such that

a0y =v;, i=1,....m—1.
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Proof. Let (U, ¢) denote a chart around p. Verify by induction that for all j > 2 there exist
smooth functions

hj:¢(U) x R~ > R
such that

ﬂ d1p

ﬂk(0)+h"(ﬂ(0) 5 © ——(0))
: e

,B(j)(O) —

for all smooth curves 8 : I — M through $(0) € U. Define the vector field

X:oU)x R > R,
X(ul’ v um) = (u2a e 7un19 ‘hm(ul’ o »um))-
Now the proposition amounts to the existence and uniqueness of a local flow for the smooth

vector field X.

There is a unique m geodesic yy,,. . v, , : J = M such that:
(m—1)

(1) yul I(O)ZUIH"'ayll] ,,,,, Up— |(0)=vm—1'

.....

Q) Ifa: J* — M is an m geodesic with
&' (0) =vy,...,e" 0 = v,_1,

then J, C J and « is equal to the restriction of yy,, 4, , to Js.
Yur....vm_; 18 denoted the maximal m geodesic satisfying (1).

We can now define a smooth vector field X on N by

X(U], cves Un— 1) - [yul U + + }’(m 1) ]0

----- —1 s Um—1

X is the m geodesic spray.
Now let @ : I — M denote an m geodesic. The m Jacobi differential equation is the
linear differential equation

m—1
ym — Z Z R (Y(kz)’ a(l+k3))a(i+k4)_
i=l ZZzlkp=m—1—i

A smooth vector field Y : I — T M along « satisfying this differential equation is called
an m Jacobi field along «. |
Proposition 5.3. Given wy, ..., wm—1 € Ty M, then there exists a unique m Jacobi field

Y along a such that

YO0 =w;, i=0,...,m—1.
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Example 54. M =R}. Forv;, ..., vn_y € T, M we have
m—1 1.
Yo, omt (1) = ; Sl 1eR.
If Ay, ..., An_ are paraliel vector fields along «, then
m—1
Y(1) = Z A @)
i=0

is an m Jacobi field.

Proposition 5.5. The variation vector field of a smooth m geodesic variation
x:IxJ—->M

is an m Jacobi field.
Let y : I — M denote a nonconstant geodesic and m > 3.

Proposition 5.6. For all € € 1 N Ry there exists an m Jacobi field Y # 0 along y such
that Y(0) =0,Y(e) = 0.

Proof. Define

mAl 1 .
B(ty=yoh(t), h@)el; h() =Y Sait’

i=0 -
for suitable real constants a;. Notice that
BN =y ohhD (@), h)el, i=1,....m—1,

hence ™ = 0, so B is an m geodesic with 84 (0) = a;y’(0).
Define

L™(e) = {m Jacobi field Y||y' | Y(0) = 0, Y (¢) = 0}.

Our aim is to show that this vector space is nontrivial. To this end define smooth m geodesic
variations

—1

xi(s,t)zy(s(ti e—ti)+t), i=2,....m-—1

with variation vector fields
ax' ;
Yi(t) = 2 (0.0) = y' (O (e — 1),
as
They are m Jacobi fields in view of Proposition-5.5. with
Y (0) =0, Yi(e) = 0.

The proposition follows. O
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Corollary 5.7. dim L™ (¢) = m — 2.

Proof. Y,, ..., Yy are clearly linearly independent. Define
Y, =span{¥y =y’ Y] =1y}

and verify that
L™(€)® Y, = {Y m Jacobi field]| y'}.

The right-hand side is an m-dimensional vector space and Y, is two dimensional, hence
the corollary. m|

Corollary 5.8. When M is flat, then
dim{m Jacobi field Y | Y(0) =0, Y(¢) = 0} = n(m — 2),

wheree € I NR,.
Now let P denote a smooth semi-Riemannian submanifold of M of dimensiondim P > 1.

Definition 5.9. An m geodesic o : I — M is m normal to P provided

c®©) L TyP, i=1,....m—1.

An m geodesic g, m normal to P with Ry C I gives rise to linear maps
Ssivy P ToyP > TP, i=1,....m—1
defined by
S,y W) = =M, 690), veT,qP,
where I7 is the tensor:
(X,Y)=tanVxY, Xe&(P), YeE(P)",

Z (P) denoting the space of smooth vector fields in P and Z(P)* denoting the space of
smooth vector fields along the inclusion map of P in M and orthogonal to P.
For b € R define a linear map Lj : To0) P — T50) P by

m—1
1 .
Ly(v) =v— E l—'bl Sa(i)(())(v)-
i=1 "

It gives rise to the polynomial
Q(b) = det Ly.

The multiplicity of b € R as arootin Q is denoted (), the algebraic multiplicity of b. The
index of a linear map L is the number of eigenvalues with negative real part. It is denoted
index L.
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An m Jacobi field V is tangential provided
i-1
VOO + D RV, 0o ®),i14(0) € T, P
k=1
foralli=1,...,m— 1.
Now let M denote a flat manifold, which is m geodesically complete.

Theorem 5.10. The space of tangential m Jacobi fields arising as variation vector fields
of smooth variations of o through m geodesics m normal to P and vanishing atb > Q is a
vector space V (b) and

dim V(b) < a(b).
If M is Riemannian then

index — S,m-1g)y < Y dim V(b).
bER+

Proof. We claim that in a possibly nonflat semi-Riemannian manifold M an m Jacobi field
V on o is the variation vector field of a smooth variation x of o through m geodesics m
normal to P iff

V(0) € Toi) P,
i—1

tan { V() + ) (Rio’, V)o®)i-1-4(0)
k=1

=MV©0),d90), i=1,....,m—1. (5.1)
If V is the variation vector field of suchan x : I x J — M define
Zi(s) =xi(0,5), selJ, i=1,...,m—1.

It is a smooth vector field along a(s) = x(0, 5), s € J orthogonal to P. Also
i1
VO(0) = Z/(0) = Y (R’ V)o®),i-14(0, 0).
k=1
Since @’ € T P (5.1) follows.
If V is an m Jacobi field along o satisfying (5.1), let & be a smooth curve in P with
a’(0) = V(0). Also let A; and B; denote normal parallel vector fields along o with

AO=0D0), i=1...,m~1,
i—1
B;(0) =nor(VY(0) + Y "(R(o’, V)o™),i-1-4 (0)).
k=1
Here we agree that a sum with top index strictly smaller than the bottom index is zero. The
vector fields above give rise to normal vector fields

Ziv)=A;(v) +vB;(v), i=1,...,m—1
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and an m geodesic variation

XS ) =Y2i5) e Zma)(t)y  sE€J, TEI
of o through m geodesics m normal to P. Now

x,15(0,0) = Z{(0) = A}(0) + Bi(0)
i—1
=11 (V(0),09(0)) + por{ V() + Y "(R(", V)a™),i21-4(0)
k=1
i—1
= V0 + Y (R0, V)o®)-14 (0.
k=1

IfY(#) =x5(0,¢), t € I then
Y(0) = x5(0,0) = a’(0) = V(0).

and

i-1

YO(0) = x50, 0) = Y (R(x;, x5)x4)i-1-4(0, 0) = V(0).

k=1
By Propositions 5.5 and 5.3 the variation vector field of x is V and the claim follows. It
follows from the claim that V () is a vector space for all » > 0. Anm, P Jacobi field along
o is an m Jacobi field V satisfying (5.1). o (b), b # 0, is an m focal point for P along o
provided there exists an m, P Jacobi field V # 0 along o with V(b) = 0. Now suppose
that M is flat.

Our next claim is that o (b), b > 0, is an m focal point for P along o iff Q(b) = 0. Also

dim V (b) = dimker L.

If Q(b) = Othen Ly is singular and there exists a nonzero v € ker L. Take parallel vector
fields A;,i =0,...,m — 1, along o with

1
Ag(0) = v, A,‘(O)=-—ﬁ o,(i)(O)(U), i=1,....,m—1.
By Example 5.4
m—1 )
Viy= Y fAi@), tel
i=0

is an m Jacobi field satisfying (5.1). Notice that the parallel vector field

m—1

Y(t) = Z_:b"A,-(t), tel
i=0

vanishes identically because L,(v) = 0, hence V (b) = 0. It follows that

dim V (b) > dim ker L,.
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On the other hand
V(b) — ker Ly, Ve VI0)=v

is a linear injection so dim V(b) = dimker L. If on the other hand, V # 0 is an m, P
Jacobi field along o with V() = 0 then

m—1
V=Y 1A
i=1
for suitable parallel vector fields A; along ¢ with

4 1
Vi) = ~ S, v=V(0).

Sov # Oand v € ker L. Hence Q(b) = 0. This verifies the second claim.

Now let a = dimV(b). If a = 0 then dim V(b) < w(b) is obvious, otherwise let
Vl, ..., Vg, ..., Uy be a basis for T, )M such that vy, ..., v, is a basis for ker L,. The
matrix representation for L; in this basis is denoted /;; (s) so

L) =Y Li(s)v;.
=1

J

Hence /;j(b) =0forall j =1,...,aandalli =1,..., n. From

Q) = D (DY U15(1)() - lngin) ).

cES,

We deduce that
Q) =0,...,09 V) =0.

We conclude that a < «(b) and the first inequality follows.
To prove the second inequality define for a topological space X

SP'"(X)=Xx---x X/ ~,

where x ~ y iff there exists o € §, such that x; = ys(;) foralli = 1,...,n. Denote an
equivalence class by [ ], x;. Also define a map

T :C"*\{cp, = 0} = B, — SP"(C), (€O, v - v v Cp) > [‘[Ai.
i=1

where

n n

Yoax' =a -2
i=1

i=

We claim that this map 7 is continuous. To see this let

Tng1 1 CFIN(0}) —» CP"
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denote the natural map and define
A=m(B), B={(ab)eC’\(0}|as0)

The map
n n
G:SP"(A) > SP"(C),  [[lai,bil> []bi/a
i=] i=1

is well defined and continuous. The map

n
S:CP" — SP"CP"),  [co.-...cal = [ ]lai, bi],
i=]
where
[T@ix =ty =) cx
i=1 i=0

is continuous by [1]. Let A,+1 = mp4+1(Bpy1). Notice that
T=GoS|ap, ©Tntl

is continuous as claimed.

Since T is continuous index L, = O near b = 0. Let A((b), ..., A,(b) denote the n
real eigenvalues of the self-adjoint linear map L. Alsolet 0 < by < --- < b; denote the
positive zeroes of Q:

dimkerLy, =a; > 1,
dimkerLy, =0, b#by,...,b;, b>0.

If there existsani € {1,...,n}and b € ]0, b1] such that A; (b) < O then by continuity of T
above there exists an { and a b, € 10, b[ such that A;(b,) = 0, a contradiction. Therefore

index L, =0, b €]0,b;].
Similarly if index Ly > o fora b € )by, by] there exists B;,, ..., Bi,, k > ay such that
Ap, (b) <0,..., 45 (b) <O.
By continuity of T this implies that there exists 8;,, ..., B;, such that
Ap (b1) =--- = Ap, (b1) =0.
A contradiction and
index Ly <y, b €]by, b2].
By induction

indexLp <ay+---+ag, belb, briy]
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fork=1,...,j— 1and
indexLp <ay+---+a;, b>bj.
Now let A denote a subspace of dimension index — S, -1 g, on which the scalar product
(v, w) > {=Sym-1y Vs w) = b(v, w)
is negative definite. On the unit sphere S(A) in A we have
—-b(v,v) >c¢, veSA)

for some constant ¢ > 0. Hence

(Lp(v), v) =b™"] ~{Sem-1g) V> V) (m—1)!
m—2 1 .
_ Z jbj_(mAl)(Sa‘j)(O)v’ v)) <0
j=0 7

for all b greater than some by > b;. Hence for b > by we have

index — Sgm—bgy < indexLp <aj+--+a; = Z dim V (b).
beRy

The theorem follows. |

Corollary 5.11. The space of m Jacobi fields arising as variation vector fields of smooth
variations of o through m geodesics m normal to P and vanishing at b > 0 is a vector
space W (b) and
dim W) =dim V(b) + (m —2)(n — p), dim P = p,
index — S,m-n() < Y (dim W(b) — (m — 2)(n — p)).
beRy

Proof. W(b) is a vector space due to the first claim in Theorem 5.10. First notice that
Wb) = Wik e Wb,
where
WT(b) = (Y m, P Jacobi field along o | ¥ (0) € T, P,
i=0,....,m—1, Y(b) =0}
WL (b) = (¥ m, P Jacobi fieldalong o | Y (0) € T, P+,
i=0,....,m—1, Y(b) =0}
To see this let Y € W (b) that is

m—1
Y(t) = ZtiAi(t)
0
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for suitable parallel vector fields Ao, ..., Ap—1. Write uniquely
Ai0) = v +w;, v eT,P, w;eT,Pt
and let A} and A? denote the parallel vector fields with
Al = v, AX0) =w;, i=0,...,m—1
Then
m—1 ) m—1 ]
Y=Y rale+ > 1Ak,
i=0 i=0
where the first sum is an m, P Jacobi field in WT(b) and the second sum is an m, P Jacobi
field in WL(b). Let E p+1s - - ., En denote parallel vector fields along o such that
span{Ep41(0), ..., En(0)} = T, P+
Then
Vy=t""b-nE;0), j=p+1,...n, i-1=1,...,m-2
is a basis for W+ (b) and the corollary follows, since V (b) = wT(). O

Now let « : I — M denote an m geodesic in an arbitrary semi-Riemannian manifold.
Given € > 0 in [ define

Y™ (€) = {Ym Jacobifieldalonge | Y (0) = 0, Y (¢) = 0}.

Propeosition 5.12, There exists € > 0 such that
dim Y™ (¢) = n(m — 2)
forallt €10, €].
Proof. Notice that
expg(xl, 0,...,0) =exp,(x1), x1 € D(exp,),
where
expp (V15 +« oy Um=1) = Yoy, ovm (1),

whenever | belongs to the domain of definition of yy, ... 4, . Letting x; = «¥(0), we

deduce that there exists € > O such that

,,,,,

m—1

dlepo’(txh...,t Xm—1)

is an isomorphism for all ¢ € [0, €[, since dexp,,(O) is an isomorphism.
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We claim that there exist linear mappings

i-1
hi : @ T,M > T,M
k=1

such that
V) = dexp';(txl, e " DG, T ),
where V is the m Jacobi field along « such that V (0) = 0, V/(0) = v; and
VOO = v +hivr,..ovimn), i=2,.om— L.
To see this define
¥:{0,1]xI - N™, Bt 8) = (t(x; + 50 ™" N X + SUM—1))
and
x(t, s) = exp), (X(z, 8)).
The variation vector field of this variation is

V) = dexpg((tvl, ey t"'_lv,,,_l)(,xI """" g )
Clearly, V(0) = 0, V’(0) = v; and
V"(0) = R(xg, x,)x:(0, 0) + x415(0,0) = (x2 + 512)5(0) = v
s0 hp(vy) = 0. Assuming the existence of hj, j=1,...,i — | <m — 2 compute
i1

X,70(0.0) = x,1,(0,0) + D _(R(x, x5)xp)i-1+ 0. 0)
k=1

i—1
= +sv)s0) =D Y Ry (s Xk )Xjkeky (0, 0)
k=13 "k, =i—1-k

i—1

=V — Z Z Rty (Vi + iy (U1 - Vky—1), Xka 1) Xk 4k,
k=1%"kp=i—1-k

=vi +hi(vr, ..., vi-D).

The claim follows. Now define an n(m — 1)-dimensional vector space
Y™ ! = {Ym Jacobi field along y | Y (0) = 0}

and linear isomorphisms
G:Y" ' > T,M™ !, Y > (Y'(0), ..., YDy

and fort > 0
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H : T,M™ ' - T,M™ !,
vty " ) o UL 2 h2W1)s L Vmet + B (U1 - Um—2)).

Then from what we have seen

V(1) =dexpy (tx1, ... 1" xm_1)(H 0 G(V)) = K (V).
The rank of the linear map K, is n for ¢ € ]0, €[ hence

dim Y™ (¢t) = dimker K; = n(m — 1) — n = n(m — 2).

The proposition follows. O
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